Ultrasonic investigation on compatibility of PVC-modified liquid natural rubber blends

Author(s):  
George V. Thomas ◽  
M. R. Gopinathan Nair
2021 ◽  
Vol 50 (10) ◽  
pp. 3003-3014
Author(s):  
Mohamad Shahrul Fizree Idris ◽  
Nurfarhana Mohd Mustaffarizan ◽  
Siti Fairus M. Yusoff

Non-catalytic hydrogenation of liquid natural rubber (LNR) via thermal decomposition of 2,4,6-trimethylbenzenesulfonylhydrazide (MSH) is reported in this study. Parameter studies of the hydrogenation reaction were performed by utilizing the combination of response surface methodology and central composite rotatable design (RSM/CCRD). The effects of each variable and the interaction between two variables (i.e. the MSH:LNR weight ratio and reaction time) were studied. Statistical analysis showed that the reaction time had significantly affected the hydrogenation percentage. A reduced quadratic model equation with the coefficient of determination (R2) value of 0.9875 was developed. The optimized condition as predicted by the software was compared with the experimental data, which deviated in only 0.67, hence indicating that this model was reliable and able to predict the hydrogenation percentage accurately. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies were used to characterize the microstructure of LNR and hydrogenated liquid natural rubber (HLNR). HLNR was then used as compatibilizer to improve the miscibility of poly(lactic acid)/natural rubber blends. With an addition of 4% HLNR, the tensile strength and impact strength of the blends were slightly improved.


2008 ◽  
Vol 16 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Rusli Daik ◽  
Ishak Ahmad ◽  
Mohd Hafizuddin Hj. Jumali

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


Sign in / Sign up

Export Citation Format

Share Document